Posets, tensor products and Schur positivity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur Function Identities and Hook Length Posets

In this paper we find new classes of posets which generalize the d-complete posets. In fact the d-complete posets are classified into 15 irreducible classes in the paper “Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets” (J. Algebraic Combin. 9 (1999), 61 – 94) by R. A. Proctor. Here we present six new classes of posets of hook-length property which generali...

متن کامل

2 00 5 Schur Positivity and Schur Log - Concavity

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...

متن کامل

Necessary Conditions for Schur-positivity

In recent years, there has been considerable interest in showing that certain conditions on skew shapes A and B are sufficient for the difference sA − sB of their skew Schur functions to be Schur-positive. We determine necessary conditions for the difference to be Schur-positive. Our conditions are motivated by those of Reiner, Shaw and van Willigenburg that are necessary for sA = sB , and we d...

متن کامل

Circular planar electrical networks: Posets and positivity

Following de Verdière-Gitler-Vertigan and Curtis-Ingerman-Morrow, we prove a host of new results on circular planar electrical networks. We first construct a poset EPn of electrical networks with n boundary vertices, and prove that it is graded by number of edges of critical representatives. We then answer various enumerative questions related to EPn, adapting methods of Callan and Stein-Everet...

متن کامل

Schur-Positivity in a Square

Determining if a symmetric function is Schur-positive is a prevalent and, in general, a notoriously difficult problem. In this paper we study the Schur-positivity of a family of symmetric functions. Given a partition ν, we denote by νc its complement in a square partition (mm). We conjecture a Schur-positivity criterion for symmetric functions of the form sμ′sμc − sν′sνc , where ν is a partitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2014

ISSN: 1944-7833,1937-0652

DOI: 10.2140/ant.2014.8.933